The user documentation for Hibridon
BASISTYPE = 4
System subroutine: sysgpi
Basis subroutine: hiba04_sysgpi.F90
Ref. M. H. Alexander and G. C. Corey, J. Chem. Phys. 84, 100 (1986); H.-J. Werner, B. Follmeg, M. H. Alexander, and D. Lemoine, ibid. 91, 5425 (1989).
NTERM
: (the number of potential surfaces involved: this should be 1 in this case). This parameter can not be changedNVMINS
: lowest vibrational level for sigma stateNVMAXS
: higest vibrational level for sigma stateNVMINP
: lowest vibrational level for pi stateNVMAXP
: higest vibrational level for pi stateJMIN
: the minimum rotational angular momenta for each 2Π channelJMAX
: the maximum rotational angular momenta for each 2Π channel in each spin-orbit manifold with convention omega .le. j .le. jmax+0.5NMIN
: the minimum Hund’s case (b) rotational angular momenta for the 2Σ stateNMAX
: the maximum Hund’s case (b) rotational angular momenta for the 2Σ state
⚠️ JMIN
, JMAX
, NMIN
, NMAX
are defined separately for each vibrational level
IPERT
: Each vibrational Pi level ivp may be perturbed by one sigma vibrational level IVS. This level is given by ivs=ipert(ivp) (see hisysgpi)IGUPI
: permutation inversion symmetry of 2Π electronic state
IGU
= 1 for gerade statesIGU
= -1 for ungerade statesIGUSG
: permutation inversion symmetry of 2Σ electronic state
IGU
= 1 for gerade statesIGU
= -1 for ungerade states⚠️ for heteronuclear molecules both IGUPI
and IGUSG
should be +1
NPARPI
: number of 2Π symmetry doublets included
NPAR
= 2 will ensure both lambda doubletsNPARPI
= 1 just ε = 1 doubletsNPARPI
= -1, just ε = -1 doubletsNPARSG
: number of spin doublets in 2Σ state included (NPAR = 2 will ensure both spin doublets)
ISYMSG
: if ISYM =+1, then the electronic symmetry of the 2Σ state is sigma-plus if ISYM = -1, then the electronic symmetry is sigma-minus
ISA
: s/a symmetry index, if the molecule is homonuclear (ihomo=t) then, if isa=+1 then only the s-levels (both for sigma and pi) are included in the basis, if isa=-1, then only the a-levels are included
ISG
: if isg=1 and ipi=0 then 2Σ + atom scattering
IPI
: if ipi=1 and isg=0 then 2Π + atom scattering. If isg=1 and ipi=1 then 2Π-2Σ + atom scattering